Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.
Search
Close this search box.

Honeywell Reports Achieving Quantum Volume 128 on Company’s Quantum Computer

Honeywell expect the latest advance and future work “will empower our customers to achieve results beyond what they thought was possible.

The Honeywell Quantum team report in a company statement that they achieved a Quantum Volume of 128 on their Quantum Computer in late September 2020.

They added that they expect that his achievement, along with future increases in the capabilities of quantum computers will help customers achieve results “beyond what they thought was possible.”

“Honeywell has made a commitment to shape and accelerate the development of Quantum Computing and bring its power to our customers,” said Tony Uttley, President of Honeywell Quantum Solutions. “Our differentiated technology, exemplified by the high-fidelity and fully-connected qubits with mid-circuit measurement and qubit reuse, enables our customers to push the frontier of quantum computing applications. And what is really exciting is that this is still just the beginning.”

Quantum volume is a metric that measures the performance of a quantum computer’s capabilities and error rates.

They added the following details:

The plot above shows the heavy outcomes for Honeywell Quantum Solutions’ tests of quantum volume and the dates when each test passed. All tests are above the 2/3 threshold to pass the respective Quantum Volume. Circles indicate heavy outcome averages and the violin plots show the histogram distributions. Data colored in blue shows system performance results and red shows modeled, noise-included simulation data. White markers are the lower 2-sigma error bounds.

The system successfully passed the Quantum Volume 128 test outputting heavy outcomes 71.78% of the time, which is above 2/3 threshold with 99.934% confidence. The average single-qubit fidelity is 99.97(1)% and the average two-qubit gate fidelity is 99.54(7)% with fully-connected qubits.

The plot above shows the individual heavy outcomes for each Quantum Volume 128 run. The blue line is an average of heavy outcomes and the red line is the lower 2-sigma error bar which crosses the 2/3 threshold after 186  circuits.

Its systems are accessible directly through Honeywell or through Microsoft Azure Quantum. In addition to offering high-fidelity, fully-connected qubits, our system features a unique mid-circuit measurement capability, which enables users to explore new classes of algorithms and to greatly reduce the number of qubits needed for certain algorithms.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Jake Vikoren

Jake Vikoren

Company Speaker

Deep Prasad

Deep Prasad

Company Speaker

Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Relevant

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Jake Vikoren

Jake Vikoren

Company Speaker

Deep Prasad

Deep Prasad

Company Speaker

Araceli Venegas

Araceli Venegas

Company Speaker

Keep track of everything going on in the Quantum Technology Market.

In one place.

Related Articles

Explore our intelligence solutions

Join Our Newsletter